TAGGED IN Lagrange-interpolation
ho94949
September 17, 2019
서론 $N!$ 은 1이상 $N$ 이하의 모든 정수를 곱한 수 이다. 이 $N!$는 다양한 조합론적 상황에서 많이 사용된다. 이 $N!$을 특정한 소수 $P$로 나눈 나머지를 빠르게 ($O(\sqrt{N} \log{N})$ 시간에) 계산 하는 방법에 대해서 알아본다. Naive 팩토리얼을 구하는 가장 쉬운 방법은 모든 1이상 $N$ 이하의 수를 곱해서 $P$ 로 나누는 것이다. $ab$를 $P$로 나눈 나머지와 $(a \bmod P)(b \bmod P) \bmod P$ 가 같다는 것을 이용하면, 사이에 나오는 숫자를 항상 $P^2$ 이하로 유지하면서 쉽게 구할 수...
factorial FFT Lagrange-interpolation