-
juney's profile image
juney
May 15, 2021
2-connectivity
Connectivity Problem $k+1$개 이상의 정점을 가진 그래프 $G$가 임의의 $k-1$개의 정점을 제거하더라도 남은 그래프가 connected graph를 유지한다면 그래프 $G$를 k-vertex-connected 라고 합니다. 이때 이를 만족하는 $k$ 중 가장 큰 값을 $G$ 의 vertex connectivity 라고 합니다. 비슷한 방식으로 간선의 경우도 $k-1$개의 간선을 제거하더라도 남은 그래프가 connected graph인 경우 k-edge-connected 라고 표현하고, 그중 가장 큰 $k$ 를 $G$의 edge connectivity 라고 합니다. 아래 그림은 2-vertex-connected 그래프의 예시입니다. 어떤 정점을 삭제하더라도 남은 그래프가 연결 그래프로 유지되기 때문입니다....
-
juney's profile image
juney
April 14, 2021
Centroid of a Tree
Centroid of a Tree Centroid는 트리에서 문제를 해결하는 경우에 중요한 역할을 하는 경우가 많습니다. 이번 글에서는 트리에서 정의되는 centroid가 무엇인지, 어떤 성질을 가지고 있는지 그리고 어떻게 사용하는지 등을 알아보고자 합니다. Centroid 트리에서 centroid는, 어떤 정점 $v$가 크기 $n$짜리 트리 $T$에서 삭제했을 경우 생기는 subtree들이 모두 각각 크기가 $n/2$ 이하가 되는 경우, $v$를 $T$의 centroid라고 합니다. 위 그림에서는 1번 노드가 centroid 입니다. 1을 삭제했을 때 각각 크기가 3, 4, 4인 서브트리가 생기고 전체 트리의 크기는 11이므로...